Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide.
نویسندگان
چکیده
We investigate the feasibility of CMOS-compatible optical structures to develop novel integrated spectroscopy systems. We show that local field enhancement is achievable utilizing dimers of plasmonic nanospheres that can be assembled from colloidal solutions on top of a CMOS-compatible optical waveguide. The resonant dimer nanoantennas are excited by modes guided in the integrated silicon nitride waveguide. Simulations show that 100-fold electric field enhancement builds up in the dimer gap as compared to the waveguide evanescent field amplitude at the same location. We investigate how the field enhancement depends on dimer location, orientation, distance and excited waveguide mode.
منابع مشابه
Plasmon optical trapping using silicon nitride trench waveguides
We theoretically demonstrate optical trapping using a silicon nitride (Si3N4) trench waveguide on which bow-tie plasmonic nanoantennas are employed for enhancing optical forces. The electric field tailing away from the waveguide is transformed and then enhanced by the plasmonic nanoantennas deposited on the waveguide surface. We show that, with gold bow-tie nanoantennas, the waveguide system ex...
متن کاملSilicon Nitride Waveguides for Plasmon Optical Trapping and Sensing Applications
We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguid...
متن کاملPlasmonic Slot Waveguides for Localized Biomolecular Sensing Applications
A plasmonic slot waveguide excited by evanescent wave coupling of a silicon strip waveguide is studied to be used as a label-free biosensor. The plasmonic slot waveguide enables strong electric-field enhancement in a small volume inducing higher interaction between the light and the analyte. OCIS codes: (280.1415) Remote sensing and sensors; (350.4238) Nanophotonics and photonic crystals
متن کاملSurface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing.
Surface-enhanced infrared absorption (SEIRA) is capable of identifying molecular fingerprints by resonant detection of infrared vibrational modes through the coupling with plasmonic modes of metallic nanostructures. However, SEIRA for on-chip gas sensing is still not very successful due to the intrinsically weak light-matter interaction between photons and gas molecules and the technical challe...
متن کاملBright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide.
In this work we investigate numerically and experimentally the resonance wavelength tuning of different nanoplasmonic antennas excited through the evanescent field of a single mode silicon nitride waveguide and study their interaction with this excitation field. Experimental interaction efficiencies up to 19% are reported and it is shown that the waveguide geometry can be tuned in order to opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 24 25 شماره
صفحات -
تاریخ انتشار 2016